
 449 

APPENDIX C: PROJECTS 
 

A useful learning tool is to complete the following two 

projects. If your lecturer chooses to use them you’ll be 

assigned a number from 1 to 48 which corresponds to a 

group presentation from the following table. This will be 

your own personal group throughout both projects. Get to 

know it well. If for any reason you find that you don’t get 

on with your group, let your lecturer know and you may 

be assigned a substitute. 

 

If such projects are not assigned, it would still be useful 

for you to choose a group and carry out the projects on 

your own. At the very least you should study the sample 

project that is included at the end of this appendix. 

 

For lecturers who decide to use these projects, solutions 

can be obtained from the author by emailing the author at 

christopherdonaldcooper@gmail.com. I can also supply a 

catalogue of all groups up to 100, with the exception of 

orders 64 and 72. This provides character tables, lists of 

subgroups etc.  

  

mailto:christopherdonaldcooper@gmail.com
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Your task for Project 1 is to: 

(1) Use the Todd-Coxeter algorithm to find the order of G 

(you may wish to simplify the presentation first, or split 

the group as a direct product if that is possible for your 

group). 

(2) Construct the group table. 

(3) Find the inverses of the elements. 

(4) Find the orders of the elements. 

(5) Construct the order profile. 

(6) Find the centraliser of each element. 

(7) Find the number of conjugates for each element.  

(8) Find the class equation. 

 

You task for Project 2 is to: 

(1) Copy your group table from Project 1. 

(2) Find the conjugacy classes. 

(3) Find the normal subgroups. 

(4) Find the centre. 

(5) Find the derived subgroup. 

(6) Draw the lattice of normal subgroups. 

(7) Chose a minimal normal subgroup and construct the 

group table of the corresponding quotient group (code 

each coset by a representative). 

(8) Choose a maximal subgroup, H, and induce the trivial 

character of H up to G. Calculate the inner product of this 

character with itself and hence decompose it into linear 

characters. (This may help you in (9), or you may want to 

complete the character table first.) 

(9) Construct the character table for G; 
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(10) (Optional) Any other information about G that you 

wish to include. 

 

Each project is to come in three sections: 

 

TITLE PAGE in which you give your name, your 

student number, the number (1-48) of your presentation 

together with the presentation itself; 

 

PART A in which you list your answers; 

 

PART B in which you show the details of your 

calculations. 

 

 The intention is for all the calculations to be 

performed by hand. If you are an efficient programmer 

with lots of time and enthusiasm you might like write a 

program to simulate hand-implementation, though it is 

not recommended. If you do so you should include a fully 

documented listing of your program in an appendix and 

your output should show complete working as if it had 

been done by hand, not just final answers. Also, whether 

or not you implement by hand or by computer, you should 

be in a position to explain the details of any step if called 

on to do so. 

 You should consider carrying out possible 

simplifying ‘pre-processing’, if you think it might 

simplify your calculations, provided you use the Todd-

Coxeter algorithm somewhere. For example you may 
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recognise that your group is a direct product of smaller 

groups, or you may choose to rewrite the presentation in 

an equivalent, but simpler, form. 

 You are invited to check with your lecturer at 

various stages to see if it looks alright so far. This will 

avoid the problem of making an early mistake and 

wasting a lot of time. Also if the Todd-Coxeter process 

doesn’t seem to be terminating don’t just continue 

mindlessly. It may mean that you aren’t using the 

algorithm correctly, or it could mean that your choice 

strategy is not as efficient as it could be. 

If you get a contradiction it probably means you 

have made an error. You need to work carefully and 

neatly. A blank table is provided in this appendix. 

However it is possible that you obtain a contradiction 

even though you haven’t made an error. This is rare, but 

it could mean that you have made poor choices in the 

algorithm. 

The Todd-Coxeter algorithm can be tedious but 

you really learn to understand it by carrying it out on a 

reasonable-size group. Be warned that it can take several 

hours and working systematically and carefully can avoid 

having to start again. But remember that in many cases 

the presentation can be simplified in a fairly obvious way, 

or can be decomposed into direct products. These can 

greatly decrease the amount of work. 

 

A sample project follows the list of presentations in this 

appendix. 
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YOUR GROUP IS ONE OF THE 

FOLLOWING 

# presentation 

1 A,BA
4
, B

4
, (AB)

2
, (A−1B)

2
 

2 A,BA
8
, B

2
, AB = BA

3
 

3 A,B, C, DA
2
, B

2
, C

3
, D

2
, CA = ADC, 

                                                            CD = AC 

4 A,B,CA
4
, B

2
, C

2
, AB = BA−1, AC = CA, 

                                                            BC = CB 

5 A,B,CA
2
, B

4
, C

2
 = B

2
, BCB = C, AB = BA, 

                                                            AC = CA 

6 A,B, CA
3
, B

3
, C

2
, CA = A−1C 

7 A,BA
4
, B

2
, (A−1B)

4
, (A2B)

2
 

8 A,B, C, DA
2
, B

2
,CA = ABC, CB = AC 

9 A,B, CA
3
, B

2
, C

3
, (AB)

2
 

10 A,BA
2
, B

8
, AB

3
 = BA 

11 A,B,CA
2
, B

2
, C

2
, A−1BCA = BC, 

                                                        CAB = BCA 

12 A,B, C, DA
2
, B

2
,CA = ABC, CB = AC, 

                                               CACB = ABCAC 

13 A,B, CA
5
, B

2
, C

2
, BA = A−1B 

14 A,B,CA
2
 = C

2
, B

2
, C

4
, CAC = A, AB = BA, 

                                                             BC = CB 

15 A,BA
4
, B

4
, AB = BA−1 

16 A,B,CA
3
, B

3
, C

4
, C

10
, ABA = B 
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17 A,BA
8
, A

4
 = B

2
, AB = BA−1 

18 A,BA
8
, B

2
, AB = BA−1 

19 A,BA
8
, B

2
, AB = BA

−3
 

20 A,B, C, DA
2
, B

2
, C

3
, D

2
, CA = ABC, 

                                                             CB = AC 

21 A,B,CA
4
, B

2
 = A

2
, C

2
, AB = BA−1, AC = CA, 

                                                             BC = CB 

22 A,BA
4
, B

4
, BAB = A 

23 A,BA
4
, B

4
, BA = AB

3
 

24 A,BA
2
, B

8
, A−1BAB−1 = B

4
 

25 A,BA
8
, B

2
, (AB)

2
 = B

2
 

26 A,B,CA
3
, B

4
, C

2
, BA = A−1B, CB = B−1C 

27 A,B,CA
2
, B

2
, C

2
, (ABC)

2
 = (AB)

2
, 

                                                        ABC = BCA 

28 A,BA
2
 = B

4
, B

8
, AB−1 = BA 

29 A,B,CA
2
, B

2
, C

2
, ABC = BCA = CAB 

30 A,BA
8
, B

2
, BA3B = A 

31 A,B,CA
2
, B

4
, C

2
, BCB = C, AB = BA, 

                                                              AC = CA 

32 A,BA
4
, B

4
, (AB)

2
, (AB−1)

2
 

33 A,B, CA3 = C, B2 , C4, (AB)2 

34 A,BA
2
, B

8
, AB3A = B 

35 A,BA
4
, B

4
, (AB)

2
, ABA

2
B−1A 

36 A,BA
8
, A

4
 = B

2
, BAB = A

3
 
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37 A,BA
8
, B

2
, (A−1B)

2
 

38 A,B,CA
4
, B

3
, C

2
, AB = B−1A, ACA = C 

39 A,BA
2
, B

8
, B−1A−1BA = B

2
 

40 A,B,CA
4
, B

2
 = A

2
, C

2
, B−1AB = A

3
, AC = CA, 

                                                              BC = CB 

41 A,BA
8
, B

2
, AB = BA

5
 

42 A,BA
4
, B

4
, (AB)

2
 = B

2
 

43 A,B, CA
2
 = C, B

2
, C

6
, (AB)

2
 

44 A,B,CA
2
, B

2
, C

4
, CAC = A, AB = BA, 

                                                              BC = CB 

45 A,BA
8
, B

2
, (AB)

2
 

46 A,B,CA
2
, B

2
, C

2
, ACB = CBA = BAC 

47 A,B,CA
4
, B

2
, C

2
, B−1AB = A

3
, AC = CA, 

                                                             BC = CB 

48 A,BA
8
, A

4
 = B

2
, A

4
 = (AB)

2
 
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SAMPLE PROJECT 1 
 

TITLE PAGE: 
A. Student 

Student Number: 123456 

Group Number: 0 

Presentation: 

G = A, B, C|A3 B2, C6, C4, AB−1AB, AC = CA,  

                                                                         BC = CB 
 

PART A: 
(1) Group Order: |G| = 12 

 

(2) Group Table: 

  
 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 3 4 5 6 7 8 9 10 11 12 

2 2 5 6 7 1 8 10 3 11 4 12 9 

3 3 8 1 9 6 5 12 2 4 11 10 7 

4 4 10 9 1 7 12 5 11 3 2 8 6 

5 5 1 8 10 2 3 4 6 12 7 9 11 

6 6 3 2 11 8 1 9 5 7 12 4 10 

7 7 4 11 2 10 9 1 12 6 5 3 8 

8 8 6 5 12 3 2 11 1 10 9 7 4 

9 9 11 4 3 12 7 6 10 1 8 2 5 

10 10 7 12 5 4 11 2 9 8 1 6 3 

11 11 12 7 6 9 10 8 4 2 3 5 1 

12 12 9 10 8 11 4 3 7 5 6 1 2 
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(3) Inverses: 

x 1 2 3 4 5 6 7 8 9 10 11 12 

x−1 1 5 3 4 2 6 7 8 9 10 12 11 

 

(4) Orders of Elements: 

x 1 2 3 4 5 6 7 8 9 10 11 12 

|x| 1 3 2 2 3 2 2 2 2 2 6 6 

 

(5) Order Profile: 

order 1 2 3 4 6 

number 1 7 2 0 2 

 

(6) Centralisers: 

C(1) = G; 

C(2) = C(5) = {1, 2, 5, 9, 11, 12}; 

C(3) = {1, 3, 4, 9}; 

C(4) = {1, 3, 4, 9}; 

C(6) = {1, 6, 7, 9}; 

C(7) = {1, 6,  7, 9}; 

C(8) = {1, 8, 9, 10}; 

C(9) = G; 

C(10) = {1, 8, 9, 10}; 

C(11) = C(12) = {1, 2, 5, 9, 11, 12} 

 

(7) The number of conjugates: 

x 1 2 3 4 5 6 7 8 9 10 11 12 

#conj 1 2 3 3 2 3 3 3 1 3 2 2 

 

(8) Class equation: 12 = 12 + 22 + 32 
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PART B: 
The given presentation was 

G = A, B, C|A3, B2, C6, C4, AB−1AB, AC=CA, 

                                                                      BC=CB. 

This can be simplified to 

G = A, B, C|A3 B2, C2, AB−1AB, AC=CA, BC=CB 

because, if C6 = C4 = 1 then C2 = 1. Also the relations 

can be rewritten as relators: 

G = A, B, C|A3 B2, C2,AB−1AB, ACA−1C−1, BCB−1C−1. 

Finally, since B2 = C2 = 1 we may write B−1 as B and 

C−1 as C to obtain 

G = A, B, C|A3 B2, C2,ABAB, ACAC, BCBC. 

 

      A     A     A     B    B     C      C    A     B     A    B 

1 2 5 1 3 1 4 1 2 6 3 1 

2 5 1 2 6 2 7 2 5 8 6 2 

3 8 6 3 1 3 9 3 8 5 1 3 

4 10 7 4 9 4 1 4 10 12 9 4 

5 1 2 5 8 5 10 5 1 3 8 5 

6 3 8 6 2 6 11 6 3 1 2 6 

7 4 10 7 11 7 2 7 4 9 11 7 

8 6 3 8 5 8 12 8 6 2 5 8 

9 11 12 69 4 9 3 9 11 7 4 9 

10 7 4 10 12 10 5 10 7 11 12 10 

11 12 9 11 7 11 6 11 12 10 7 11 

12 9 11 12 10 12 8 12 9 4 10 12 
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      A     C     A    C     B     C     B     C 

1 2 7 4 1 3 9 4 1 

2 5 10 7 2 6 11 7 2 

3 8 12 9 3 1 4 9 3 

4 10 5 1 4 9 3 1 4 

5 1 4 10 5 8 12 10 5 

6 3 9 3 6 2 7 11 6 

7 4 1 2 7 11 6 2 7 

8 6 11 12 8 5 10 12 8 

9 11 6 3 9 4 3 1 9 

10 7 2 5 10 12 8 5 10 

11 12 8 6 11 7 2 6 11 

12 9 3 8 12 10 5 8 12 

 

 

 A B C 

1 (2) (3) (4) 

2 (5) (6) (7) 

3 (8) 1 (9) 

4 (10)  9 1 

5 1 8 10 

6 3 2 (11) 

7 4 11 2 

8 6 5 (12) 

9 11 4 3 

10 7 12 5 

11 12 7 6 

12 9 10 8 
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The group table is: 

 

  A B C 2A 2B 2C 3A 3C 4A 6C 8C 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 2 3 4 5 6 7 8 9 10 11 12 

2 2 5 6 7 1 8 10 3 11 4 12 9 

3 3 8 1 9 6 5 12 2 4 11 10 7 

4 4 10 9 1 7 12 5 11 3 2 8 6 

5 5 1 8 10 2 3 4 6 12 7 9 11 

6 6 3 2 11 8 1 9 5 7 12 4 10 

7 7 4 11 2 10 9 1 12 6 5 3 8 

8 8 6 5 12 3 2 11 1 10 9 7 4 

9 9 11 4 3 12 7 6 10 1 8 2 5 

10 10 7 12 5 4 11 2 9 8 1 6 3 

11 11 12 7 6 9 10 8 4 2 3 5 1 

12 12 9 10 8 11 4 3 7 5 6 1 2 

 

The inverses are found by looking for the positions of 

the 1’s in the group table. 

 

The centralisers are obtained by scanning along a row 

and down the corresponding column, noting where we 

get a match. Because elements and their inverses have 

the same centralisers we can skip some elements. 

 

The number of conjugates is the index of the centraliser. 

So, for example, 6 has 12/4 = 3 conjugates because its 

centraliser has order 4. 
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Note that there are 4 elements with 2 conjugates so they 

must be in 2 separate classes. 

 

Similarly the number of classes of size 3 is 6/3 = 2. 
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SAMPLE PROJECT 2 
 

TITLE PAGE: 

A. Student 

Student Number: 123456 

Group Number: 0 

Presentation: G = A,B,C|A3 B2, C6, C4, AB−1AB, 

AC=CA, BC=CB 

 

PART A: 

(1) Group table: copied from Project 1. 

 

 1 A B C A2 AB 

 1 2 3 4 5 6 

1 1 2 3 4 5 6 

2 2 5 6 7 1 8 

3 3 8 1 9 6 5 

4 4 10 9 1 7 12 

5 5 1 8 10 2 3 

6 6 3 2 11 8 1 

7 7 4 11 2 10 9 

8 8 6 5 12 3 2 

9 9 11 4 3 12 7 

10 10 7 12 5 4 11 

11 11 12 7 6 9 10 

12 12 9 10 8 11 4 
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 AC BA BC CA ABC BAC 

 7 8 9 10 11 12 

1 7 8 9 10 11 12 

2 10 3 11 4 12 9 

3 12 2 4 11 10 7 

4 5 11 3 2 8 6 

5 4 6 12 7 9 11 

6 9 5 7 12 4 10 

7 1 12 6 5 3 8 

8 11 1 10 9 7 4 

9 6 10 1 8 2 5 

10 2 9 8 1 6 3 

11 8 4 2 3 5 1 

12 3 7 5 6 1 2 

 

 (2) Conjugacy Classes: 

1 2 3 4 5 6 

1 2  5 3 6 8 9 11 12 4 7 10 

 

(3) Normal subgroups: 

G0 = {1} = 1; 

G1 = {1, 9}= 1 + 4; 

G2 = {1, 2, 5} = 1 + 2; 

G3 = {1, 2, 5, 9, 11, 12} = 1 + 2 + 4 + 5; 

G4 = {1, 2, 3, 5, 6, 8} = 1 + 2 + 3; 

G5 = {1, 2, 4, 5, 7, 10}= 1 + 2 + 6 and 

G itself.    
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(4) Centre: 

Z(G) = G1 = 1 + 4. 

 

(5) Derived Subgroup: 

G = G2 = 1 + 2. 

 

(6) Lattice of Normal Subgroups: 

 

 

 

 

 

 

 

 

 

(7) Quotient Groups: 

G/G1: 

 1 2 3 5 6 8 

1 1 2 3 5 6 8 

2 2 5 6 1 8 3 

3 3 6 1 6 5 2 

5 5 1 6 2 3 6 

6 6 8 5 3 1 5 

8 8 3 2 6 5 1 

 

(8) Inducing the trivial character of a maximal 

subgroup: 

G3 = {1, 2, 5, 9, 11, 12} is a maximal subgroup. 

G 

G3 G4 
G5 

G1 

1 

G2 
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Inducing the trivial character of G3 up to G we get the 

character  for G: 

 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

 2 2 0 2 2 0 

orders 1 3 2 2 6 2 

 |  = 2. 

 = 1 + another linear character. 

 

(9) Character Table:  

 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

2 1 1 −1 1 1 −1 

3 2 −1 0 2 −1 0 

4 1 1 1 −1 −1 −1 

5 1 1 −1 −1 −1 1 

6 2 −1 0 −2 1 0 

order 1 3 2 2 6 2 

 

(10) Other information: 

Sylow Subgroups: 

p = 2: {1, 3, 4, 9}, {1, 6, 7, 9} and {1, 8, 9, 10}, all 

isomorphic to V4. 

p = 3: {1, 2, 5}, which is isomorphic to C3. 

 

G is soluble but not nilpotent. 
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PART B: 

Conjugacy classes: 

Clearly 1 and 9 are classes of size 1. 3−1.2.3 = 3.2.3 = 8.3 

= 5. Since 2 and 5 only have 2 conjugates this must be 

all. This leaves 11 and 12 as the remaining class of size 

2. Conjugating 3 by 2 gives 6 and conjugating 6 by 2 

gives 8. There are no further conjugates so {3, 6, 8} is a 

conjugacy class, leaving {4, 7, 10} as the remaining one. 

  

Normal subgroups: 

Of course there is the trivial subgroup and the whole 

group. 

Normal subgroups of size 2: Such a group must be made 

up of two classes of size 1 and clearly {1, 9} is the only 

possibility. 

Normal subgroups of size 3: Such a group must be cyclic 

and so the non-trivial elements must have order 3. So 

there is only one such subgroup: {1, 2, 5}. 

Normal subgroups of size 4: Since there are no elements 

of order 4, such a subgroup would have to be made up of 

the identity and 3 elements of order 2. But the onlu 

conjugacy classes consisting of elements of order 2 are 

{9}, {3, 6, 8} and {4, 7, 10}. The only possibilities would 

be {1, 3, 6, 8} and {1, 4, 7, 10} but neither of these is 

closed. So there are no normal subgroups of order 4. 

Normal subgroups of order 6: Well, any subgroup of 

order 6 would be normal, having index 2. The only 

subgroups of order 6 are C6 and D6. The only cyclic 

subgroup of order 6 is 11 = {1, 11, 5, 9, 2, 12}. 
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A normal subgroup that is isomorphic to D6 would have 

2 elements of order 3 and 3 elements of order 2. The only 

possibilities are {1, 2, 5, 3, 6, 8} and {1, 2, 5, 4, 7, 10}. 

 Another argument is that if H = {1, 2, 5} then H is 

normal and G/H has order 4. This can’t be cyclic because 

there is no element of G whose order is divisible by 4, So 

G/H  V4. This has three subgroups K/H of order 2 and 

such subgroups would have order 6. So we know that G 

has 3 subgroups of order 6, and we have found them. 

 

Centre: 

The centre consists of all the elements in a conjugacy 

class of size 1. So Z(G) = G1 = 1 + 4. 

 

Derived Subgroup: 

G/G2 has order 4 and so is abelian. Hence G  G2. But 

since G2 has order 3, if G < G then G = 1 and so G is 

abelian, which clearly it isn’t. Hence G = G2 = 1 + 2. 

 

Quotient Groups: 

There are two minimal normal subgroups: G1 and G2. 

The cosets (left and right) of G1 in G are: 

1  9 2  11 3  4 5  12 6  7 8  10 

 

The group table for G/G1 (representing each coset by a 

representative) is: 
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 1 2 3 5 6 8 

1 1 2 3 5 6 8 

2 2 5 6 1 8 3 

3 3 6 1 6 5 2 

5 5 1 6 2 3 6 

6 6 8 5 3 1 5 

8 8 3 2 6 5 1 

This is abelian and so must be C6 rather than D6. 

 

The cosets (left and right) of G2 in G are: 

1  2  5 3 6  8    4  7  10  9  11  12 

 

The group table for G/G1 (representing each coset by a 

representative) is: 

 1 3 4 9 

1 1 3 4 9 

3 3 1 9 4 

4 4 9 1 3 

9 9 4 3 1 

This is abelian. By examining the diagonal we can see 

that it must be V4 rather than C4. 

 

WARNING: Here the group table for the quotient could 

be found directly from the group table for G.  This will 

not always be the case. If the product of two 

representatives does not happen to be a representative, 

one should replace the product by the representative of the 

coset in which that product occurs. 
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Inducing the trivial character of a maximal 

subgroup: 

G3 = {1, 2, 5, 9, 11, 12} is a maximal subgroup. 

Inducing the trivial character of G3 up to G we get the 

character  for G: 

 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

 2 2 0 2 2 0 

order 1 3 2 2 6 2 

The value an induced character is the index of G3 in G 

(which is 2) times the proportion of the conjugacy 

classes that lie in in G3 (either 0 or 1 since G3 is a normal 

subgroup and so each class is either all in or none in) 

times the average value of the character (which is 1). 

 |  = 
1

12
 (4.1 + 4.2 + 0.3 + 4.1 + 4.2 + 0.3) = 2. 

Hence  is not irreducible. But 2 is a sum of squares 

only as 12 + 12 so  is the sum of 2 different linear 

characters. 

 1 |  = 
1

12
 (1.2.1 + 1.2.2 + 1.0.3 + 1.2.1 + 1.2.2 + 

1.0.3) = 1 so one of these linear characters is 1. (Of 

course once we saw that 1 |  had to be positive we 

could see that.) 

Hence  − 1 must be an irreducible character and so we 

obtain a second row of the character table: 
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 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

 2 2 0 2 2 0 

 − 1 1 1 −1 1 1 −1 

orders 1 3 2 2 6 2 

  

Character Table:  

 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

2 1 1 −1 1 1 −1 

3 2 −1 0 2 −1 0 

4 1 1 1 −1 −1 −1 

5 1 1 −1 −1 −1 1 

6 2 −1 0 −2 1 0 

order 1 3 2 2 6 2 

 

The conjugacy classes of H = G/G1 are {1}, {2, 5}, {3, 

6, 8}. This can be done in the usual way but noting that 

G/G1 has order 6 and is not cyclic (there are no elements 

of order 6), it must be D6. This has 3 conjugacy classes, 

namely the identity, the 2 elements of order 3 and the 3 

elements of order 2. 
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The character table of H is thus: 

class 1 2 3 

size 1 2 3 

1 1 1 1 

2 1 1 −1 

3 2 −1 0 

order 1 3 2 

 

NOTES: 

1 is the trivial representation. 

2 was obtained by inducing from H/K where K is the 

normal subgroup of order 3. 

3 was obtained by orthogonality. 

 

Inducing up from H to G we get 3 irreducible characters 

table for G: 

 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

2 1 1 −1 1 1 −1 

3 2 −1 0 2 −1 0 

4       

5       

6       

order 1 3 2 2 6 2 

 

The remaining degrees must satisfy n4
2 + n5

2 + n6
2 = 6 so 

we may take n4 =  n5 = 1 and n6 = 2. 
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Since each class is its own inverse the entries in the 

character table are all real. 

Since the elements of 3 and 6 have order 2, the entries 

in those columns must be 1 for the degree 1 

representations and 2 or 0 for the degree 2. 

Also, the entries 42 and 52 are real cube roots of unity 

and so must be both 1. 

 

Thus we may complete these columns as follows: 

 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

2 1 1 −1 1 1 −1 

3 2 −1 0 2 −1 0 

4 1 1 1 a b −1 

5 1 1 −1 c d 1 

6 2 x 0 e f 0 

order 1 3 2 2 6 2 

 

NOTE: The possibilities 1, 1, −1 for the last three entries 

in the 3rd and 6th columns violate the condition on the 

sum of squares of the entries down these columns. 

 

By orthogonality between the 1st and 2nd columns get 

x = −1. 

 By orthogonality between the 1st and 4th and 3rd and 4th 

rows we get a + b = − 2 and 2a − b = −1 

From which we conclude that a = b = −1. 
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By orthogonality between the 5th and 3rd rows we get: 

2 − 2 + 0 + 2c − 2d + 0 = 0 and hence c = d. 

 

By orthogonality between the 1st row and the 5th we get: 

1 + 2 − 3 + c + 2d + 3 = 0 and hence, since c = d, they are 

both equal to − 1. 

 

By orthogonality between the 4th and 5th columns we get 

e = − 2 and f = 1. 

 

 This sounds rather ad hoc. We would have been 

better to use an extra quotient group. 

G/G1 is isomorphic to V4 which has character table: 

 

 1 4 5 6 

size 1 1 2 3 

 1 1 1 1 

 1 1 −1 −1 

 1 −1 1 −1 

 1 −1 −1 1 

order 1 2 2 2 

 

The cosets in G/G1 are:  

1  2  5 3 6  8    4  7  10  9  11  12 
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So inducing up to G we get the irreducible characters: 

 

 1 2 3 4 5 6 

elements 1 2 5 3 6 8 9 11 12 4 7 10 

size 1 2 3 1 2 3 

 1 1 1 1 1 1 

 1 1 1 −1 −1 −1 

 1 1 −1 −1 −1 1 

 1 1 −1 1 1 −1 

orders 1 3 2 2 6 2 

 

Two of these we already had, but we get 2 new ones. 

Adding them to our character table we get: 

 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

2 1 1 −1 1 1 −1 

3 2 −1 0 2 −1 0 

4 1 1 1 −1 −1 −1 

5 1 1 −1 −1 −1 1 

6       

order 1 3 2 2 6 2 

 

Clearly 6 must have degree 2 for the sum of squares of 

the degrees to add up to 12. The rest of the table can be 

completed by column orthogonality. 
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 1 2 3 4 5 6 

size 1 2 3 1 2 3 

1 1 1 1 1 1 1 

2 1 1 −1 1 1 −1 

3 2 −1 0 2 −1 0 

4 1 1 1 −1 −1 −1 

5 1 1 −1 −1 −1 1 

6 2 −1 0 −2 1 0 

 

 Note that the character we got from inducing up 

from a subgroup is one we could have got by inducing up 

from the quotient group. Inducing up from quotient 

groups is far better than using subgroups. But when you 

have a group with very few normal subgroups the 

subgroup inducing might be all we have. Ad hoc 

arguments like we used at first are OK but can get very 

messy. The moral is to use quotient group induction first, 

and only fall back on the other methods as a last resort. 

 

Sylow subgroups: 

A Sylow 2-subgroup would have order 4. It couldn’t be 

cyclic as there are no elements of order 4. So they would 

be generated by 2 commuting elements of order 2. 

The elements of order 2 are: 3, 4, 6, 7, 8, 9, 10. To find 

commuting pairs we look at the centralisers. But hey, the 

centralisers provide us with 3 ready-made subgroups of 

order 4:  

{1, 3, 4, 9}, {1, 6, 7, 9} and {1, 8, 9, 10}. Are there any 

more? 
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The number of Sylow 2-subgroups is congruent to 1 

modulo 2 and divides 12. The only such numbers are 1, 

3 and we already have 3 Sylow 2-subgroups, so these are 

all there are. 

 

A Sylow 3-subgroup must have order 3. We have the 

normal subgroup {1, 2, 5}. Any more? No, because all 

Sylow subgroups, for a particular prime, can be obtained 

from one another by conjugation. Once one is normal 

there can be no others. 

 

Hence the Sylow p-subgroups are: 

p = 2: {1, 3, 4, 9}, {1, 6, 7, 9} and {1, 8, 9, 10}, all 

isomorphic to V4. 

p = 3: {1, 2, 5}, which is isomorphic to C3. 

 

G is soluble: 

G has order 3 and hence is cyclic. Thus G = 1. 
 


