APPENDIX C: PROJECTS

A useful learning tool is to complete the following two
projects. If your lecturer chooses to use them you’ll be
assigned a number from 1 to 48 which corresponds to a
group presentation from the following table. This will be
your own personal group throughout both projects. Get to
know it well. If for any reason you find that you don’t get
on with your group, let your lecturer know and you may
be assigned a substitute.

If such projects are not assigned, it would still be useful
for you to choose a group and carry out the projects on
your own. At the very least you should study the sample
project that is included at the end of this appendix.

For lecturers who decide to use these projects, solutions
can be obtained from the author by emailing the author at
christopherdonaldcooper@gmail.com. | can also supply a
catalogue of all groups up to 100, with the exception of
orders 64 and 72. This provides character tables, lists of
subgroups etc.
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Your task for Project 1 is to:

(1) Use the Todd-Coxeter algorithm to find the order of G
(you may wish to simplify the presentation first, or split
the group as a direct product if that is possible for your
group).

(2) Construct the group table.

(3) Find the inverses of the elements.

(4) Find the orders of the elements.

(5) Construct the order profile.

(6) Find the centraliser of each element.

(7) Find the number of conjugates for each element.

(8) Find the class equation.

You task for Project 2 is to:

(1) Copy your group table from Project 1.

(2) Find the conjugacy classes.

(3) Find the normal subgroups.

(4) Find the centre.

(5) Find the derived subgroup.

(6) Draw the lattice of normal subgroups.

(7) Chose a minimal normal subgroup and construct the
group table of the corresponding quotient group (code
each coset by a representative).

(8) Choose a maximal subgroup, H, and induce the trivial
character of H up to G. Calculate the inner product of this
character with itself and hence decompose it into linear
characters. (This may help you in (9), or you may want to
complete the character table first.)

(9) Construct the character table for G;
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(10) (Optional) Any other information about G that you
wish to include.

Each project is to come in three sections:

TITLE PAGE in which you give your name, your
student number, the number (1-48) of your presentation
together with the presentation itself;

PART A in which you list your answers;

PART B in which you show the details of your
calculations.

The intention is for all the calculations to be
performed by hand. If you are an efficient programmer
with lots of time and enthusiasm you might like write a
program to simulate hand-implementation, though it is
not recommended. If you do so you should include a fully
documented listing of your program in an appendix and
your output should show complete working as if it had
been done by hand, not just final answers. Also, whether
or not you implement by hand or by computer, you should
be in a position to explain the details of any step if called
on to do so.

You should consider carrying out possible
simplifying ‘pre-processing’, if you think it might
simplify your calculations, provided you use the Todd-
Coxeter algorithm somewhere. For example you may

451



recognise that your group is a direct product of smaller
groups, or you may choose to rewrite the presentation in
an equivalent, but simpler, form.

You are invited to check with your lecturer at
various stages to see if it looks alright so far. This will
avoid the problem of making an early mistake and
wasting a lot of time. Also if the Todd-Coxeter process
doesn’t seem to be terminating don’t just continue
mindlessly. It may mean that you aren’t using the
algorithm correctly, or it could mean that your choice
strategy is not as efficient as it could be.

If you get a contradiction it probably means you
have made an error. You need to work carefully and
neatly. A blank table is provided in this appendix.
However it is possible that you obtain a contradiction
even though you haven’t made an error. This is rare, but
it could mean that you have made poor choices in the
algorithm.

The Todd-Coxeter algorithm can be tedious but
you really learn to understand it by carrying it out on a
reasonable-size group. Be warned that it can take several
hours and working systematically and carefully can avoid
having to start again. But remember that in many cases
the presentation can be simplified in a fairly obvious way,
or can be decomposed into direct products. These can
greatly decrease the amount of work.

A sample project follows the list of presentations in this
appendix.
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YOUR GROUP IS ONE OF THE
FOLLOWING

# presentation
1 [ (AB|A%, B, (AB), (A1B)?)
2 |(AB|A® B’ AB=BA®
3 |(AB,C,D|A% B C’, D’ CA=ADC,
CD = AC)
4 |(AB,C|A* B C°, AB=BA", AC =CA,
BC = CB)
5 |(AB,C|A* B* C*=B% BCB=C, AB =BA,
AC = CA)
6 |(AB,C|A®’ B C’ CA=ALC)
7 | (AB|A* B (A1B)", (A2B))
8 |(AB,C,D|A% B*CA=ABC,CB=AC)
9 |(AB,C|A’ B C°, (AB))
10 | (A B|A% B’ AB®’=BA)
11 |(aB,c| A’ B* C* A-1BCA = BC,
CAB = BCA)
12 |(AB,C,D|A’ B°CA=ABC,CB=AC,
CACB = ABCAC)
13 | (AB, C|A® B? C* BA =A"'B)
14 |(AB,C|A’=C" B C' CAC=A AB=BA,
BC = CB)
15 |(AB|A* B AB=BA™Y)
16 | (aB,c|A’ B% C* C° ABA=B)
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17

(AB|A® A*=B° AB=BAY

18

(AB|A®’ B’ AB=BA™Y

19

(AB|A®’ B’ AB=BA

20

(AB, C,D| A% B? C° D°, CA = ABC,
CB = AC)

21

(AB,C|A" B*=A’ C°, AB=BA, AC=CA,
BC = CB)

22

(AB|A" B BAB = A)

23

(AB|A" B* BA=AB%

24

(AB|A’, B’ A-1BAB! = B%

25

(AB|A° B (AB)’ = B%

26

(AB,C|A’ B* C* BA=A"'B,CB=B"C)

27

(A,B,C|A% B C? (ABC)’ = (AB),
ABC = BCA)

28

(AB|A’=B" B’ AB!=BA)

29

(A,B,C| A% B’, C°, ABC = BCA = CAB)

30

(AB| A’ B®, BA3B = A)

31

(AB,C|A° B* C*, BCB=C, AB = BA,
AC = CA)

32

(AB|A" B® (AB)’, (ABY)?)

33

(A,B,C|A3=C,B?, C* (AB)?

34

(AB| A% B®, AB3A =B)

35

(AB|A*, B®, (AB)’, ABA’BIA)

36

(AB|A® A*=B° BAB = A’
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37

(AB|A® B (A1B))

38

(AB,C|A* B’ C? AB=B'A, ACA =C)

39

(AB| A%, B’ B'A-'BA = B%

40

(AB,C|A*, B°=A% C°,B'AB=A’ AC=CA,
BC = CB)

41

(AB|A® B’ AB=BA’

42

(AB|A* B*, (AB)’=B%

43

(AB,C|A’=C, B’ C°, (AB)"

44

(A\B,C| A’ B’ C*',CAC=A, AB =BA,
BC = CB)

45

(AB|A® B (AB))

46

(A,B,C|A% B? C? ACB = CBA = BAC)

47

(AB,C|A" B® C*, BAB =A% AC=CA,
BC = CB)

48

(AB|A° A*=B° A= (AB))
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SAMPLE PROJECT 1

TITLE PAGE:

A. Student

Student Number: 123456

Group Number: 0

Presentation:

G =(A, B, C|A®B?, C" C* AB™'AB, AC = CA,

BC = CB)
PART A:
(1) Group Order: |G| =12
(2) Group Table:

1 2 3 4 5 6 7 8 9 10 11 12
1112 (3|4|5|6|7|8|9|10[11]12
2125671810/ 3[11]|4|12]9
3(3(8[1(9(6|5([12(2 411|107
414110/ 9| 1|7 |12|5|11|3|2|8]|6
5(5(1[8[10[{2 3|46 12|79 |11
663211819 |5|7]12]4]10
7171411210/ 9 |1 |12(6|5|3]|38
886 |5 (1232 [11|1]10/9 |74
99 (11|43 |12|7|6[10]/1|8|2]|5
10[10| 7 |12 5|4 11| 2|9 |8 | 1|63
1111127 |6 |9 |10 8|4 |2 |3|5]|1
1211219 (10| 8 |11 4 |3 |7 |5 |6 |12
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(3) Inverses:

X|1

2

3

4

5

6

oo

10

11

12

x1|1

5

3

4

2

6

10

12

11

(4) Orders of Elements:

X [1|2

3

4

5

6

7

IX| [1]3

2

2

3

2

2

(5) Order Profile:

order
number

1

2

3

1

7

2

(6) Centralisers:
CQ) =¢G;

C(2)=C(5)={1,2,5,9, 11, 12};

C(3)=1{1,3,4,9};
C@4)=1{1,3,4,9}
C®)=1{1,6,7,9};
C(7)={1,6, 7,9},

C(8) =11, 8,9, 10};

C(9) = G;
C(10) = {1, 8, 9, 10};
C(11) = C(12) ={1, 2,5, 9, 11, 12}

(7) The number of conjugates:

X

1

2

3

4

5

6

7

8

9

#conj

1

2

3

3

2

3

3

3

1

(8) Class equation: 12 = 1*2 + 2%2 + 3%2
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PART B:

The given presentation was

G = (A, B, C|A?, B?, C% C* AB'AB, AC=CA,
BC=CB).

This can be simplified to

G =(A, B, C|A® B? C? AB'AB, AC=CA, BC=CB)

because, if C® = C* =1 then C2 = 1. Also the relations

can be rewritten as relators:

G =(A, B, C|A®B? C? AB'AB, ACAIC, BCBIC™).

Finally, since B2 = C? = 1 we may write B™ as B and

C-1as C to obtain

G =(A, B, C|A® B? C%ABAB, ACAC, BCBC).

A A A BB C CA B A B

1 12 |5 |1 |8 |1 |4 |1 |2 |6 |3 |1
2 |5 |1 |2 |6 |2 |7 |2 |5 |8 |6 |2
3 |8 |6 |3 |1 |3 |9 |3 |8 |5 |1 |3
4 1107 |4 |9 |4 |1 |4 10|12 |9 |4
5 |1 |2 |5 |8 |5 |10|5 |1 |3 |8 |5
6 [3 |8 |6 |2 |6 |11]|6 |3 |1 |2 |6
/7 |4 |10|7 |11 |7 |2 |7 |4 |9 |11 |7
8 |6 |3 |8 |5 |8 |12|8 |6 |2 |5 |8
9 |11 |12|/69]4 |9 |3 |9 |11 |7 |4 |9
107 |4 101210 |5 |10 |7 |11 12|10
1112 |9 |11 |7 |11|6 |11 12|10 |7 |11
1219 |11 /121012 |8 |12]|9 |4 |10 12
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The group table is:

A B C 2A 2B 2C 3A 3C 4A 6C 8C

1 2 3 4 5 6 7 8 9 10 11 12

1/1}2|3|4 |5 |6 |7 8|9 101112
2112|5671 10 3 (11| 4 | 12| 9
3/3(8|1]|9|6/|5|12|2 |4 11|10 7
4141109 1|7 (125 |11 3 8 | 6

5/5|118]10|2 |3 |4|6 127 |9 |1

6|6 2 11118 |1 S| 7 12| 4 |10
71741112 (109 |1 |12 5|38
g/ 8|6 |5(12|3 |2 (111|109 |7 | 4
9/ 9 (11|14 |3 }12| 7|6 (101 |8 ] 2|5
10({10(7 (12|54 |11, 2|9 |8 | 1|6 |3
111112, 7|6 |9 (10, 8 | 4|2 |3 |5|1
121129 |10 8 |11 (4 |3 | 7 |5 |6 |1]2

The inverses are found by looking for the positions of
the 1’s in the group table.

The centralisers are obtained by scanning along a row
and down the corresponding column, noting where we
get a match. Because elements and their inverses have
the same centralisers we can skip some elements.

The number of conjugates is the index of the centraliser.

So, for example, 6 has 12/4 = 3 conjugates because its
centraliser has order 4.
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Note that there are 4 elements with 2 conjugates so they
must be in 2 separate classes.

Similarly the number of classes of size 3 is 6/3 = 2.
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SAMPLE PROJECT 2

TITLE PAGE:

A. Student

Student Number: 123456

Group Number: 0

Presentation: G = (A,B,C|A3 B?, C%, C* AB!AB,
AC=CA, BC=CB)

PART A:
(1) Group table: copied from Project 1.
1 A B C A? AB
1 2 3 4 5 6
1111234 |5]| 6
2|12 |56 71| 8
313|181 ]9|6]5
414110191 |7]12
5/5]11/8|10]2] 3
663211181
7107141112 ]10| 9
886|512/ 3]| 2
919|114 3 |12| 7
10110 7 |12|5 |4 |11
11111127 |6 ]9 |10
121121 9 |10 8 |11 4
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AC BA BC CA ABC BAC
/8 9 10 11 12

117 18] 9]10] 11 12
2110 3 |11 | 4 | 12 9
3112 2 | 4 11| 10 7
415 |11 ] 3| 2 8 6
514 |6 12| 7 9 11
6|9 | 5|7 |12] 4 10
71111216 |5 3 8
8111 ] 1 /10| 9 7 4
9| 6 /10| 1 | 8 2 5
1002 1918 |1 6 3
1118 | 4 | 2 | 3 5 1
12| 3 | 7 ] 5] 6 1 2
(2) Conjugacy Classes:
.| I I's | T4| I I's
1125|368 9 11124710

(3) Normal subgroups:

Go={1}=T7y;

G = {1, 9}: I'1+1

G, = {1, 2, 5} =1 +17;

Gs = {1, 2,5,9, 11, 12} =[N +I1o+14+15%;
Gy = {1, 2,3,5,6, 8} =I1+12+0%

Gs = {1, 2,45 7, 10}= I+I,+Tsand

G itself.
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(4) Centre:
Z(G)=G1=T1+ T4

(5) Derived Subgroup:
G =Gx=T'1 +T.

(6) Lattice of Normal Subgroups: G

(7) Quotient Groups:

G/Gs:

12356 8
111({2|3|5/6/|8
212/5|6(1|8|3
3/3|/6/1/6|5|2
5/5/1/6[2|3|6
6/6/8|5(3|1|5
8/8(3|2/6|5]|1

(8) Inducing the trivial character of a maximal
subgroup:
G;={1,2,5,9, 11, 12} is a maximal subgroup.
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Inducing the trivial character of Gs up to G we get the
character 6 for G:

I'n I I's Ty I's T's
size 1 2 3 1 2 3

Y1 1111111

0 212102120

orders 1 3 2 2 6 2
01]6)=2.

0 = x1 + another linear character.

(9) Character Table:
Fl Fz F3 F4 FS FG
size 1 2 3 1 2 3

vl 11111
v|1]1|-1]1]1]|-1
w3l 2|-1/0|2|-1]0
val1l]1]1]-1]-1|-1
vs|1]1]|-1]-1]-1|1
x6 2 —1 0 —2 1 O
order 1 3 2 2 6 2

(10) Other information:

Sylow Subgroups:
p=2:{1,3,4,9}{1,6,7,9tand {1, 8, 9, 10}, all
isomorphic to V..

p =3: {1, 2, 5}, which is isomorphic to Cs.

G is soluble but not nilpotent.
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PART B:

Conjugacy classes:

Clearly 1 and 9 are classes of size 1. 31.2.3=3.2.3=8.3
= 5. Since 2 and 5 only have 2 conjugates this must be
all. This leaves 11 and 12 as the remaining class of size
2. Conjugating 3 by 2 gives 6 and conjugating 6 by 2
gives 8. There are no further conjugates so {3, 6, 8} is a
conjugacy class, leaving {4, 7, 10} as the remaining one.

Normal subgroups:

Of course there is the trivial subgroup and the whole
group.

Normal subgroups of size 2: Such a group must be made
up of two classes of size 1 and clearly {1, 9} is the only
possibility.

Normal subgroups of size 3: Such a group must be cyclic
and so the non-trivial elements must have order 3. So
there is only one such subgroup: {1, 2, 5}.

Normal subgroups of size 4: Since there are no elements
of order 4, such a subgroup would have to be made up of
the identity and 3 elements of order 2. But the onlu
conjugacy classes consisting of elements of order 2 are
{9}, {3, 6,8} and {4, 7, 10}. The only possibilities would
be {1, 3, 6, 8} and {1, 4, 7, 10} but neither of these is
closed. So there are no normal subgroups of order 4.
Normal subgroups of order 6: Well, any subgroup of
order 6 would be normal, having index 2. The only
subgroups of order 6 are C¢ and Dg. The only cyclic
subgroup of order 6 is (11) = {1, 11,5, 9, 2, 12}.
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A normal subgroup that is isomorphic to D would have
2 elements of order 3 and 3 elements of order 2. The only
possibilities are {1, 2, 5, 3, 6, 8} and {1, 2, 5, 4, 7, 10}.

Another argument is that if H = {1, 2, 5} then H is
normal and G/H has order 4. This can’t be cyclic because
there is no element of G whose order is divisible by 4, So
G/H = V,. This has three subgroups K/H of order 2 and
such subgroups would have order 6. So we know that G
has 3 subgroups of order 6, and we have found them.

Centre:
The centre consists of all the elements in a conjugacy
class of size 1. S0 Z(G) =G, =T'; + Iy,

Derived Subgroup:

G/G, has order 4 and so is abelian. Hence G’ < G,. But
since G has order 3, if G’ < G then G’ =1 and so G is
abelian, which clearly it isn’t. Hence G’ = G, =T'1 + I's.

Quotient Groups:

There are two minimal normal subgroups: G; and G..
The cosets (left and right) of G; in G are:
119/211]34|512|6 7|8 10|

The group table for G/G; (representing each coset by a
representative) is:
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312|615
This is abelian and so must be Cg rather than De.

The cosets (left and right) of G, in G are:
1125[368[4710]9 11 12]

The group table for G/G; (representing each coset by a
representative) is:
13409
3 9
1 4
9 3
9 4131
This is abelian. By examining the diagonal we can see
that it must be V, rather than C..

WP
ENTEIES

Ol WkF

WARNING: Here the group table for the quotient could
be found directly from the group table for G. This will
not always be the case. If the product of two
representatives does not happen to be a representative,
one should replace the product by the representative of the
coset in which that product occurs.
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Inducing the trivial character of a maximal
subgroup:
Gs;={1, 2,5,9, 11, 12} is a maximal subgroup.
Inducing the trivial character of G; up to G we get the
character 6 for G:
I'n I I's T4 I's T’
size 1 2 3 1 2 3
v, 1111111

0220|220
order 1 3 2 2 6 2
The value an induced character is the index of G5 in G
(which is 2) times the proportion of the conjugacy
classes that lie in in G3 (either 0 or 1 since G3 is a normal
subgroup and so each class is either all in or none in)
times the average value of the character (which is 1).

(0]0)=15(41+42+03+41+42+03)=2.

Hence 6 is not irreducible. But 2 is a sum of squares
only as 1% + 1250 0 is the sum of 2 different linear
characters.

(1] 0) =55 (121 +122+103+121+122+

1.0.3) = 1 so one of these linear characters is ;. (Of
course once we saw that (y1 | 6) had to be positive we
could see that.)

Hence 6 — x1 must be an irreducible character and so we
obtain a second row of the character table:
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I'n I I's T's I's T's

size 1 2 3 1 2 3
v1|1]1/1]1(1]1

0/ 2(2]01|2]2|0
O—y:| 1|1 |-1]1]1]|-1
orders 1 3 2 2 6 2

Character Table:
Fl Fz Fg r4 FS 1—16
size 1 2 3 1 2 3

vi| 1 1 1 1 1 1
vo| 1 1 | -1 1 1 | -1
vl 2 |-1] 0 2 |-110
val 1 1 1 | -1 -1 -1
s | 1 1 |1 -1]-1]-1]1
ve| 2 | -1 0 | -2 1 0
order 1 3 2 2 6 2

The conjugacy classes of H = G/G; are {1}, {2, 5}, {3,
6, 8}. This can be done in the usual way but noting that
G/G; has order 6 and is not cyclic (there are no elements
of order 6), it must be De. This has 3 conjugacy classes,
namely the identity, the 2 elements of order 3 and the 3
elements of order 2.
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The character table of H is thus:

class
Size
%1

%2

%3
order

1

Rl w

RN

NOTES:
1 1S the trivial representation.

¥2 Was obtained by inducing from H/K where K is the
normal subgroup of order 3.

N ST 5

N|O

¥s Was obtained by orthogonality.

Inducing up from H to G we get 3 irreducible characters

table for G:
I'n T2 I's Ta I's T
size 1 2 3 1 2 3
v|1[1]1]1]1]1
v 1]1|-1]1]1]-1
3| 2|-1/0]2|-1|0
A4
A5
A6
order 1 3 2 2 6 2

The remaining degrees must satisfy ns? + ns? + ng? = 6 SO
we may take n,= ns =1 and ng = 2.
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Since each class is its own inverse the entries in the
character table are all real.

Since the elements of I'; and I'¢ have order 2, the entries
in those columns must be #1 for the degree 1
representations and +2 or O for the degree 2.

Also, the entries y42 and ys, are real cube roots of unity
and so must be both 1.

Thus we may complete these columns as follows:
In Io Is T4 TIs T
size 1 2 3 1 2 3

vi| 1 1 1 1 1 1
2| 1 1 | -1 1 1 | -1
3]l 2 | -1] 0 2 |11 0
val| 1 1 1 a b | -1
X5 1 1 —1 C d 1
e | 2 X 0 e f 0
order 1 3 2 2 6 2

NOTE: The possibilities 1, 1, —1 for the last three entries
in the 3rd and 6th columns violate the condition on the
sum of squares of the entries down these columns.

By orthogonality between the 1% and 2" columns get

X =-1.

By orthogonality between the 1% and 4" and 3" and 4"
rowswegeta+b=—-2and2a—-b=-1

From which we conclude thata =b =-1.
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By orthogonality between the 5" and 3" rows we get:
2-2+0+2c—2d+0=0andhencec=d.

By orthogonality between the 1% row and the 5" we get:
1+2-3+c+2d+3=0and hence, since ¢c =d, they are

both equal to — 1.

By orthogonality between the 4" and 5" columns we get

e=—-2andf=1

This sounds rather ad hoc. We would have been
better to use an extra quotient group.
G/G; is isomorphic to V4 which has character table:

I'n Ty Ts T%
size 1 1 2 3
111(1)1
111 (-1(-1
1(-1(1 (-1
1(-1]-1
order 1 2 2 2

The cosets in G/G; are:

1125[/368[4710]9 11 12]
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So inducing up to G we get the irreducible characters:

In I Is T4 I I's
elements 1 25 368 9 1112 4710

size 1 2 3 1 2 3
1|1 1 1 1 1
1] 1 1 |[-1] -1 -1

111 -1 -1 -1 1

111 -1 |1 1 -1

orders 1 3 2 2 6 2

Two of these we already had, but we get 2 new ones.
Adding them to our character table we get:
I I2: TIs Tsa TIs Ts
size 1 2 3 1 2 3

vi| 1 1 1 1 1 1
vo| 1 1 |11 1 |-
3| 2 -1 0 2 -1 0
xal| 1 1 1 1 -1]-1]-1
vs| 1 1 | -1]-1]-1|1
A6

order 1 3 2 2 6 2

Clearly ys must have degree 2 for the sum of squares of
the degrees to add up to 12. The rest of the table can be
completed by column orthogonality.
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size 1 2 3 1 2 3
vi| 1 1 1 1 1 1
v2| 1 1 | 1 1 1 | -1
w3l 2 | -1] O 2 | -1 0
val 1 1 1 | -1|-11|-1
s | 1 1 |1 -1]1-1]-1]1
vl 2 | -1] 0 | -2]1 0

Note that the character we got from inducing up
from a subgroup is one we could have got by inducing up
from the quotient group. Inducing up from quotient
groups is far better than using subgroups. But when you
have a group with very few normal subgroups the
subgroup inducing might be all we have. Ad hoc
arguments like we used at first are OK but can get very
messy. The moral is to use quotient group induction first,
and only fall back on the other methods as a last resort.

Sylow subgroups:

A Sylow 2-subgroup would have order 4. It couldn’t be
cyclic as there are no elements of order 4. So they would
be generated by 2 commuting elements of order 2.

The elements of order 2 are: 3, 4, 6, 7, 8, 9, 10. To find
commuting pairs we look at the centralisers. But hey, the
centralisers provide us with 3 ready-made subgroups of
order 4:

{1, 3,4,9},{1,6,7,9}and {1, 8, 9, 10}. Are there any
more?
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The number of Sylow 2-subgroups is congruent to 1
modulo 2 and divides 12. The only such numbers are 1,
3 and we already have 3 Sylow 2-subgroups, so these are
all there are.

A Sylow 3-subgroup must have order 3. We have the
normal subgroup {1, 2, 5}. Any more? No, because all
Sylow subgroups, for a particular prime, can be obtained
from one another by conjugation. Once one is normal
there can be no others.

Hence the Sylow p-subgroups are:
p=2:{1,3,4,9},{1,6,7,9and {1, 8, 9, 10}, all
isomorphic to Va.

p =3: {1, 2, 5}, which is isomorphic to Cs.

G is soluble:
G' has order 3 and hence is cyclic. Thus G” = 1.
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